Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Rev. Fac. Med. UNAM ; 61(6): 43-51, nov.-dic. 2018. tab, graf
Article in Spanish | LILACS | ID: biblio-990393

ABSTRACT

RESUMEN En el mundo actual, las llamadas "tecnologías de fabricación por adición" o impresión 3D también llamado prototipado rápido, han trascendido las fronteras de casi todos los campos de la ciencia, y su incursión en la medicina es cada vez mayor. Es justamente en el campo médico que esta tecnología de impresión por adición ha evolucionado a la bioimpresión, que incluye un proceso de cultivo celular en laboratorio haciendo posible la formación de órganos y/o tejidos personalizados. Para la impresión tridimensional de órganos en humanos se toman muestras de un tejido o células madre del paciente, para ser cultivadas y expandidas en laboratorio para su posterior diferenciación a una línea celular específica. Para este proceso se utiliza un material sólido como andamio a temperatura ambiente con un punto de fusión conocido. En la creación de un modelo para la fabricación de un órgano o tejido en impresión 3D, se utilizan los estudios de imágenes médicas de los pacientes intentando preservar al máximo la anatomía de las estructuras que se desean reproducir. En este artículo se abordan las bases y el potencial uso de esta tecnología en el área médica.


ABSTRACT In today's world, so-called "addition manufacturing technologies" or 3D printing also called rapid prototyping have transcended the borders of almost every field of science and medicine is no exception. It is not surprising that its exploration for practical uses is increasing. In medicine, this technology of printing by addition has evolved to bioprinting, which occurs by a special process, from cells grown in a laboratory, which makes possible its transformation into a type of organs tailored to the patient. The three-dimensional impression of human organs requires take samples of tissues or stem cells from the patient, which are grown in the laboratory waiting to multiply or differentiate to other cell lines; then, to create said object, a solid material at room temperature and with a known melting point is applied layer by layer. Currently the use of this technology uses the medical images of patients trying to preserve the anatomy of the structures that they want to reproduce. In this article the bases and the potential use of this technology in the medical area will be addressed.

2.
Electron. j. biotechnol ; 34: 59-66, july. 2018. graf, tab, ilus
Article in English | LILACS | ID: biblio-1047365

ABSTRACT

Background: The use of novel materials as an artificial extracellular matrix for stem cell growth is a current strategy of increasing interest for regenerative medicine. Here, we prepare thermal-remolded membrane scaffolds from poly(3-hydroxybutyrate) grafted with 2-amino-ethyl methacrylate hydrochloride. However, it is unclear whether these membranes are useful for tissue engineering. Results: The mechanical properties, tribology, and morphology of the dense membranes were assessed. The results show that tensile strain at break and roughness of the compressed membrane decrease with increasing graft degree. Moreover, graft copolymer membranes showed lower resistance to scratching, greater degree of swelling and higher brittleness than un-grafted P(3HB) films. Thus, it effectively supports the growth of dermal fibroblast, as demonstrated by epifluorescence microscopy. Conclusions: It is concluded that the developed membrane can be properly used in is the restoration of skin tissue. How to cite: González-Torres M, Sánchez-Sánchez R, Solís-Rosales SG, et al. Poly(3-hydroxybutyrate) graft copolymer dense membranes for human mesenchymal stem cell growth.


Subject(s)
Mesenchymal Stem Cells/physiology , Membranes, Artificial , Temperature , Regenerative Medicine , Growth
SELECTION OF CITATIONS
SEARCH DETAIL